Lecture 15 - Constructive Solid Geometry

Philip Caplan
CSCI 0422 - Geometric Modeling (Spring 2022)
Learning objectives

By the end of this lecture you will be able to:

- represent complex shapes from simpler ones using binary set operations: union, difference, intersection,
- use a binary space partition to perform discrete solid modeling operations,
- intersect polygons with planes, creating two polygons on either side of the plane.
Getting started...

Switch Host & Client today!

$ git pull
$ make update
$ cmake .
$ make template_class15_practice
$ cmake .

Compiling and running the exercise:

$ make class15_practice

Compiling and running the solution (after class):

$ make class15_practice_sol
Detective work: find the bug.

```cpp
// represents a simplified version of the HalfEdgeMesh container (only holds HalfEdge's)
std::set< std::unique_ptr<HalfEdge> , std::less<> > edges;

// add 5 edges to the container
for (int i = 0; i < 5; i++)
  edges.insert( std::make_unique<HalfEdge>() );

// assign the cost of all edges
double cost = 100;
for (auto & e : edges) {
  e->cost = cost ++;
  printf("cost = %g\n",e->cost);
}

// comparison used to determine order in priority queue
struct CompareCost {
  bool operator() ( const HalfEdge* e1 , const HalfEdge* e2) const {
    return e1->cost < e2->cost;
  }
};
std::multiset<HalfEdge*,CompareCost> pq;

// add the first edge in the container to the priority queue
HalfEdge* e = edges.begin()->get();
pq.insert(e);

// delete this edge from the simplified HalfEdgeMesh container
auto it = edges.find(e);
assert( it != edges.end() );
edges.erase(it);

// print the cost of the edge with the highest priority
e = * pq.begin();
printf("top edge cost = %g, queue size = %lu\n",e->cost,pq.size());
//pq.erase(e); // uncomment to show even more memcheck errors
```
Constructive Solid Geometry.

how would you create a mesh of this geometry?
Solid represented analytically via set operations.
Solid represented analytically via set operations.
Boolean operators in CAD software.
Representing a solid via CSG with a binary space partition.

- Represent each shape as a mesh.
- To perform a CSG operation \((\cap, \cup, -)\), determine "side" of each polygon w.r.t. all other polygons.
- Polygons might intersect, in which case they need to be split in two (front, back).
- How to determine side of each polygon w.r.t. other polygons? (efficiently)
Representing a solid via CSG with a binary space partition.

- Represent each shape as a mesh.
- To perform a CSG operation (\cap, \cup, $-$), determine "side" of each polygon w.r.t. all other polygons.
- Polygons might intersect, in which case they need to be split in two (front, back).
- How to determine side of each polygon w.r.t. other polygons? (efficiently)

binary space partition
Building a Binary Space Partition.

main idea: each polygon defines a plane → divide other polygons to be in front/back of this plane.

1. pick a starting polygon \(p \) (with normal \(n \)), space in front is \(P^+ \), behind in \(P^- \),
2. initialize front and back arrays of polygons (children),
3. loop through each polygon \(q \):
 (a) determine "side" (front or back) of each vertex in \(q \),
 (b) if all sides or the same, place \(q \) into either front or back appropriately,
 (c) otherwise, split \(q \) into two polygon and add to front and back branches,
4. build the front and back branches using the polygons that were just classified.
Intersecting planes with polygons.

Given a polygon p with normal n and some point $c \rightarrow$ defines a plane \mathcal{P}. Side s of a point v can be determined via the sign of

$$s = n \cdot v - n \cdot c.$$

$s < 0 \ ? \ v$ is in \mathcal{P}^-, otherwise v is in \mathcal{P}^+.
Intersecting planes with polygons.

Given a polygon \(p \) with normal \(\mathbf{n} \) and some point \(\mathbf{c} \rightarrow \) defines a plane \(\mathcal{P} \). Side \(s \) of a point \(\mathbf{v} \) can be determined via the sign of

\[
 s = \mathbf{n} \cdot \mathbf{v} - \mathbf{n} \cdot \mathbf{c}.
\]

\(s < 0 \) ? \(\mathbf{v} \) is in \(\mathcal{P}^- \), otherwise \(\mathbf{v} \) is in \(\mathcal{P}^+ \).
Final polygons may not be the nicest, but solid is represented.
Other uses of Binary Space Partitions.

hidden surface removal: which triangle is in front of another triangle?
Rest of class time for Project 3 work.